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Interferometric data were obtained in the UTIAS 10 x 18 cm hypervelocity shock 
tube of oblique shock-wave reflexions in nitrogen a t  initial temperatures and pressures 
of about 300K and 15torr. The shock-Mach-number range covered was 2 < H, 6 8 
over a series of wedge angles 2" < 0, < 60". Dual-wavelength laser interferograms 
were obtained by using a 23 cm diameter field of view Mach-Zehnder interferometer. 
In addition to our numerous results the available data for nitrogen, air and oxygen 
obtained over the last three decades were also utilized. It is shown analytically and 
experimentally that in non-stationary flows seven domains exist in the (ill6, 0,) plane 
where regular reflexion (RR), single-Mach reflexion (SMR), complex-Mach reflexion 
(CMR) and double-Mach reflexion (DMR) can occur. In  addition, the transition 
boundaries between these regions were established. The experimental results from 
many sources substantiate the present analysis, and areas of disagreement which 
existed in the literature are now clarified and resolved. It is shown that real-gas effects 
have a significant influence on the size of the regions and their boundaries. The 
comprehensive, accurate and sensitive isopycnic data will form a base for comparing 
existing and future numerical analyses of such complex flows. 

1. Introduction 
When a planar moving incident shock wave encounters a sharp compressive corner 

in a shock tube, two processes take place simultaneously. The incident shock wave is 
reflected by the wedge surface, whereas the induced non-stationary flow behind it is 
deflected by the wedge corner. In  the following, the first process will be referred to as 
shock-wave reflexion, the second as flow deflexion and the overall phenomenon as 
shock-wave diffraction. For a given gas the diffraction process depends on three 
factors: (1)  Mach number of the incident shock wave ill6; (2) corner wedge angle 8,; 
(3) initial gas pressure and temperature. Four different types of shock-wave reflexions 
now have been observed in shock-tube experiments. They are: regular (RR), single- 
Mach (SMR), complex-Mach (CMR) and double-Mach (DMR) reflexions. Illustrations 
of these four possible oblique shock-wave reflexions are shown in figure 1 (plate 1).  

Although RR and SMR were first noticed by the distinguished physicist and 
philosopher E. Mach as early as 1878, almost no work was done in this field until the 
1940s when von -Neumann reinitiated the problem. An intensive investigation at 
Princeton University under the supervision of Prof. W. Blealiney finally led to the 
discovery of CMR by Smith (1945) and DMR by White (1951). Once these four types 
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FIGURE 2. (a) Incident ( I )  and reflected (R)  shock-polar combination illustrating different ter- 
mination criteria for regular reflexion (RR). Imperfect nitrogen Mo = 4.00, Po = 15 torr, 
To = 300 K. Various states are given by numbers in brackets. For clarity, letters a-f indicate 
transition paths corresponding to states shown by number. R,: S; = 60.00°, M. = 2.00. Ri,: 
'mechanical-equilibrium' criterion, Sg = 56.42", M, = 2.21. R,ii: U; = 52.66", M, = 2.43. RiV: 
'detachment' criterion, Pw = 49.99, M, = 2.57. Note: all polars are accurately drawn to scale for 
given conditions. ( b )  Comparison between the ' dctachment ' and the ' mechanical-equilibrium ' 
criteria for RR termination in the (M,, 86) plane, imperfect nitrogen Po = 15 tom, To = 300 K. 
Communication of a scale length I , ,  to the reflexion point P :  (e )  non-stationary flow; (d) steady 
flow. 

of reflexion were found it became necessary to establish the transition criteria between 
them. The RR z SMR transition was first studied by von Neumann (1963) who 
assumed the following: (1)  perfect gas; (2) two-dimensional inviscid flows; (3) when 
there are two possible solutions (the so-called weak and strong families of shock waves) 
for producing a required deflexion, the weak-shock solution will occur. This is an 
experimental fact which was verified in the study of two-dimensional supersonic 
wedge flows (Liepmann & Roshko 1957). Although an explanation of minimum 
entropy for weaker shocks is sometimes advanced it has not been proven analytically; 
and (4) the flow is pseudo-stationary. Using those assumptions von Neumann (1963) 
postulates that in a R R  the streamline deflexion angle 8, through the reflected shock 
wave is equal in magnitude but opposite in sign to the deflexion angle 8, through the 
incident shock wave, i.e. 8, + 8, = 0. This is violated when the wedge angle 8, decreases 
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to a point where it forces 8, to exceed the maximum deflexion angle 82wb. This criterion 
will be referred to as the 'detachment' criterion. The detachment criterion can best be 
illustrated by using the pressure-deflexion (P, 8)  shock polars. Consider figure 2 (a )  
where the I and R polars represent the incident and reflected shock waves, respectively. 
Since the net deflexion through a RR is zero the solution is a t  the point where the R 
polar intersects the PIP, axis, i.e. state (2' or e) on Riii. As the wedge 8, decreases the 
R polar moves away from the PIP, axis until it becomes tangent to it [figure 2a, state 
(2' orf) on Ri,]. With a further decrease in 8,, the R polar will not intersect the P/Po 
axis any more and a RR is not possible. Consequently, the detachment criterion is 
represented by the Ri, shock polar. 

Some disagreement between the detachment criterion and actual experiments 
were found by Smith (1945). In his experiments RR persisted beyond the limit deter- 
mined by the detachment criterion. Kawamura & Saito (1956) who tried to resolve 
the disagreement by making use of shock polars discovered that the point of tangency 
between the R polar and the PIP, axis (i.e. Riv, figure 2a) can lie outside or inside the 
I polar depending on whether the value of M, is greater or smaller than a certain 
change-over value M,. Unfortunately, their misprinted value for M, = 3.203 does not 
match their other parameters Po/Pl = 0.433, 9, = 41.5' and y = 1.4 which results in 
M, = 2-198. It is possible that the misprint should read 2.203, which is in good 
agreement with the above value. To compound the difficulty Henderson & Lozzi 
(1975) quote M, = 2.23 for a perfect gas with y = 1.402 in the text, but unfortunately 
use the value of 2.40 in the caption to their figure 2. Using the value y = 1.402 we 
calculate Il.lo, = 2.192. Molder (1979) has recently calculated for a perfect diatomic 
gas (y  = 1.4) a value of M,, = 2.202. The value calculated here yields M, = 2.190 
(M, = 1.450 and e:, = 48.55') for a perfect diatomic gas (y  = Q) and M, = 2.185 
(M, = 1.449 and = 48.46') for imperfect nitrogen at Po = 15 torr and To = 300K. 
The significance of real-gas effects (vibration and vibration-rotation coupling) even 
at this low Mach number (M, z 1-45) is clear albeit small. 

Henderson & Lozzi ( 1  975) investigated the RR z SMR transition problem experi- 
mentally in a wind tunnel and in a shock tube. They introduced an alternative criterion 
which has the property that the system always remained in mechanical equilibrium 
(i.e. no pressure discontinuities) during transition. Consider figure 2 (a) and note that, 
once RR terminates and SMR forms, the solution moves from the point where the R 
polar intersects the PIP, axis [state (2' or f )  on Riv] to the point where the I and R 
polars intersect [states (2 and 3 or (a) on RI,]. Consequently, a sharp pressure change 
is associated with this transition, if the detachment criterion is accepted and either 
M, or 8, are changed continuously so that the reflexion will go through transition 
conditions (i.e. start a RR and change to SMR or vice versa). Henderson & Lozzi 
(1975) argue that 'a  system which develops a pressure discontinuity during transition 
cannot be in mechanical equilibrium ' and that 'if a pressure discontinuity occurs 
during transition then an unsteady wave of finite amplitude or a finite amplitude band 
of waves will be generated in the flow. These would be expansion [waves] for RR -+ SMR 
and compression [waves] for SMR -+ RR.' However, since these waves have not been 
observed, they discarded the detachment criterion and suggested an alternative 
criterion that enables the system t o  be in mechanical equilibrium during transition. 
In  order to maintain the system in mechanical equilibrium the transition should take 
place at  the point where the R polar intersects the I polar (SMR) on the PIP, axis 
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(RR). This is illustrated by states (2) and (3 or c) on the Rii polar of figure 2(a).  The 
formulation of this criterion yields 6, + B2 = 6, = 0 (6, is the deflexion of the flow 
while passing through the Mach stem) and it will be referred to as the ‘mechanical- 
equilibrium’ criterion. Consider polar Riii (figure 2a)  and note that according to the 
detachment criterion a RR takes place a t  (2’ or e )  while, according to the mechanical- 
equilibrium criterion, RR cannot occur, since the termination criterion given by R,, 
was exceeded. It is worth noting that the area of disagreement in the (M,, 6h) plane 
(6k = 6,+x, where x is the triple point trajectory angle) between these two criteria 
(figure 2 b )  is very large. The mechanical-equilibrium criterion rather than reducing 
the previously mentioned disagreement between theory and experiments found by 
Smith (1945), where RR occurred even below the line of the detachment criterion in 
shock-tube experiments at low incident shock wave Mach numbers, made it even 
worse, for their line lies above the detachment criterion line for all M, > 1.68 @Io = 2.23, 
do = 41.20’). Nevertheless, Henderson & Lozzi should be credited for their new 
physical approach to the problem. It is possible that in an experiment where the 
wedge angle 6, is changed gradually, perhaps one might obtain two different criteria 
for RR -+ SMR and SMR -+ RR transitions. Consider figure 2 (a )  and note that if one 
starts with a given SMR at states ( 2 )  and (3 or a )  on R,, and the wedge angle is increased 
slowly, it is conceivable that states a (SMR), b (SMR), c (SMR-tRR) and d (RR) 
might be encountered, and hence the transition would follow the mechanical-equili- 
brium criterion. However, if one started with a given RR state (2 or d )  on Ri and then 
decreases 6, gradually, it is possible that the sequence of events might be states 
d (RR), c (RR), e (RR), f (RR) and a (SMR). This sequence of events follows the 
detachment criterion. Such experiments have not been made to date and need further 
study. 

During their attempt to substantiate their mechanical-equilibrium criterion, 
Henderson & Lozzi (1975) found a ‘remarkable anomaly’ between their results from 
wind-tunnel and shock-tube experiments with single wedges where RR continued to 
exist below the detachment and mechanical-equilibrium transition boundary lines 
(figure 2b)  in aregion where the ‘ perfect-gas theory had no RR-solution ’. This anomaly 
did not occur in non-stationary flows over double wedges or single concave corners. 
Henderson & Lozzi resolved the anomaly by postulating that those RR configurations 
found below the mechanical-equilibrium transition line were really undeveloped 
DMR configurations in which all shock waves, slipstreams and triple points typical of 
a well-developed DMR were too close together to be observed. 

Since the disagreement concerning the RR sr SMR transition could not be resolved 
analytically, Auld & Bird (1976) decided to approach the problem numerically. They 
studied the RR sr SMR transition numerically in steady flows in the region whero both 
types of RR and SMR are theoretically possible. Their calculations were carried out 
at the molecular level using the direct-simulation Monte-Carlo method. Since a RR 
was always established in the ‘dual-solution region’ in both monatomic and diatomic 
steady flows, Auld & Bird (1976) concluded that ‘the recent conclusion [of Henderson 
& Lozzi (1975)] that Machreflexionalways OCCUIS in the overlap regionrequires further 
study ’ ; they suggestedfurthermore that ‘low-density wind-tunnel results that resolved 
the wave structure of the reflexion point would be particularly useful’. 

Hornung (1977) and Hornung, Oertel8t Sandeman (1979) initiated another criterion 
for the termination of RR. They argued that in order for a SMR to form, a length scale 
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must be available at the reflexion point, i.e. pressure signals must be communicated 
to the reflexion point. This single argument eventually led them to two different 
termination lines for RR depending on whether the flow under consideration is steady 
or non-stationary . 

Consider the non-stationary RR in figure 2 (c) and note that the length 1, can affect 
the reflexion point P only when a subsonic flow is established between Q and P (in 
a frame of reference attached to P ) .  In  a steady flow [figure 2(d)] the length I,, can 
affect the reflexion point P only if a propagation path exists between point Q and 
point P via the expansion wave at  Q’. This is possible only if the flow between P and 
Q’ is subsonic. According to Hornung (1977) and Hornung et al. (1979) this could 
happen if a SMR existed since the flow behind the Mach stem is subsonic. Consequently, 
they argued that transition takes place the very first time a SMR can occur. Consider 
figure 2 (a)  and note that this corresponds to states (2) and (3) on Rii, and represents 
the mechanical-equilibrium criterion of Henderson & Lozzi (1975). Thus, the analysis 
of Hornung et al. led to two different transition lines in steady and non-stationary 
flow. In steady flow the transition satisfies the mechanical-equilibrium criterion while 
for non-stationary flows their analysis led to a new transition line, which will be 
referred to as the ‘sonic’ criterion. Note that if the sonic-transition line were drawn 
in figure 2 ( b ) ,  it  would coincide with the detachment-criterion-transition line since it 
lies slightly below it only at very weak incident shock waves. Hornung (1977) and 
Hornung et al. (1979) claim to have experimental data obtained in both shock-tube 
and wind-tunnel flows that verify their analysis. 

Once RR terminates, three different types of reflexion can occur in non-stationary 
flows, i.e. SMR, CMR and DMR. White (1951, 1952) was the first to notice that when 
the flow behind the reflected shock wave, R, becomes supersonic in a frame of reference 
attached to the first triple point T (i.e. M2T > 1)  a kink forms in R and the transition 
SMR + CMR occurs. A mechanism for the transition was later suggested by Gvozdeva 
et al. (1969, 1970) and Henderson & Lozzi (1975). Henderson & Lozzi suggested that a 
‘band of compression waves’ must exist in a CMR. These compression waves then 
converge to a shock wave to form a DMR when M2T > 1.  Unfortunately, their sug- 
gestion was not substantiated analytically or experimentally. In  addition, the precise 
value of M2T for the termination of CMR and the formation of DMR was not established 
either. The correct gasdynamic criterion for the transition CMR e DMR was 
established during the present study. It will be shown that the flow Mach number 
behind the reflected shock wave with respect to the ‘kink’ of a CMR M,,, must be 
greater than unity (i.e. M,, > 1 )  for a DMR to form. Consequently, the CMR 7+ DMR 
transition occurs a t  M2K = 1 .  It will be shown furthermore that in nitrogen M,, = 1 
corresponds to lK2T z 1.3 and hence Gvozdeva et al. (1969, 1970) and Henderson & 
Lozzi (1975) were correct in predicting the transition at  M2T > 1.  An attempt to 
establish some transition boundary lines experimentally was made by Bazhenova, 
Fokeev & Gvozdeva (1976). However, their experiments did not cover a significant 
range of incident shock wave Mach number (M,) and corner wedge angles (Ow).  Their 
experimental boundaries for SMR, CMR and DMR are limited to M, < 4.5. Un- 
fortunately, experiments by other researchers also did not cover a wide range of 
interest. Smith (1945), White (1951, 1952) and Kawamura & Saito’s (1956) experi- 
mental data covered only the range 1 < M, < 2.75, while Henderson & Lozzi’s (1975) 
experiments were centredaround the RR-termination criterionline. Law & Glass (1  971) 
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were the first to extend the range of incident shock Mach numbers up to M, < 8, 
but their corner wedge-angle range a t  the lower end was limited (25" < 0, < 60"). 

Figure 3 is a reproduction of figure 5 from the paper by Bazhenova et al. (1976). It 
summarizes all the theoretical and experimental knowledge (excluding the mechanical- 
equilibrium criterion for the termination of RR, discussed earlier) concerning the 
regions and boundaries of RR, SMR, CMR and DMR which was available when the 
present study started. Only the termination criterion of RR is calculated analytically 
for both perfect and imperfect gases (lines I and 2, respectively). Although the SMR 
line is also calculated (line 5) for a perfect gas only, it does not start or terminate a t  
any other boundary line and hence does not enclose any region. The imperfect boundary 
lines between SMR, CMR and DMR (lines 3 and 4) were all obtained experimentally 
and they do not encompass any closed region. There is no information about the types 
of reflexions for wedge angles in the range 0 < 8, < 20". 

Although most of the investigators were interested in finding the correct transition 
criteria from one type of reflexion to another there were some attempts (Bargmann 
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1945; Fletcher & Taub 1951; Schneyer 1975; Kutler & Shankar 1977; Shankar, 
Kutler & Anderson 1977) to solve the entire flow field for a given reflexion utilizing 
various analytical or numerical methods. Unfortunately the numerical results suffer 
from a lack of agreement for the same initial conditions depending on the technique 
used for a solution (see Ben-Dor & Glass ( 1978) for details). 

In  view of the above literature survey the present research was directed towards 
the following. 

( 1 )  Resolving the disagreements concerning the termination of RR. 
(2) Establishing the correct CMR s DMR transition criterion. 
(3) Defining domains and transition boundaries of the various reflexions in order 

that they can be predicted a priori. 
(4) Extending the experimental data over a much wider range, i.e. 0 < 0 ,  < 60" 

and 1 < M, < 8. 
(5) Resolving and clarifying areas of disagreement existing in the literature con- 

cerning this complex problem. 
During the present study all the criteria for the formation and termination of RR,  

SMR, CMR and DMR were established analytically. Consequently, the (M,, 0;) and 
the (ill,, 0,) planes were divided into the domains of different types of reflexion and 
diffraction processes, respectively. 

I n  analysing the shock-wave-reflexion problem two major difficulties arise: the 
nonlinearity of the equations of motion, and the inclusion of real-gas effects. These 
were overcome, and for the first time the 14 well-known oblique shock-wave equations 
of a SMR were solved for imperfect gases in dissociation equilibrium (Ben-Dor 1 9 7 8 ~ ) .  
It is shown that real-gas effects have a significant influence on the size of the different 
reflexion and diffraction domains and their transition boundaries. 

Nearly 60 experiments were performed in the 10 x 18 cm UTIAS Hypervelocity 
Shock Tube in nitrogen, a t  an initial temperature of nearly 300K and a pressure of 
15 torr. The shock Mach number range was 2 < M, < 8 over a series of wedge angles 
2" < 0,0 < 60". Dual-wavelength interferograms were obtained by using a 23cm 
diameter field of view Mach-Zehnder interferometer equipped with a pulsed-laser 
source. For each and every type of diffraction the shock shapes and density field 
(isopycnics) as well as the density distribution along the wedge surface were deduced 
from the corresponding interferograms. 

The experimental results of the present study and that of other sources substantiate 
the present analysis. In  addition areas of disagreement which existed in the literature 
have been clarified and resolved. 

The interferometric data on flow isopycnics presented here are the most compre- 
hensive in the literature and the first since the pioneering experiments of White 
(1951) a t  very low shock Mach numbers. The isopycnics also form a solid data base 
to be used for comparison with analyses done by computational fluid dynamicists 
(Ben-Dor & Glass 1978). The isopycnics are far more sensitive to the numerical 
solutions than the predicted shock-wave-reflexion configurations. Undoubtedly, com- 
puter codes will evolve in the future and will be able to accurately predict all the 
inviscid flow properties of perfect and imperfect gases undergoing non-stationary 
oblique shock-wave reflexions. 
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FIGURE 4. Equivalent oblique shock wave reflexions in steady and non-stationary flows. (a) 
Regular reflexion in steady flow. ( b )  Regular reflexion in non-stationary flow. (c )  Single-Mach 
reflexion in steady flow. (d) Single-Mach reflexion in non-stationary flow. 

2. Analysis 
Since the incident shock wave moves with a constant velocity, the entire problem 

can be considered from a pseudo-stationary point of view, by attaching a frame of 
reference to any point on the incident shock wave. The above suggests that instead 
of three independent variables x, y and t the phenomenon is now describable in 
terms of xlt  and y l t  and the flow is self-similar. 

In  the pioneering analysis of Jones, Martin & Thornhill (1951) they showed that if 
a non-stationary reflexion is self-similar it can be made pseudo-stationary by super- 
imposing a counterflow M, = IcAcosec $o with respect to the point of reflexion P, 
parallel to the wall for the case of regular reflexion (compare figures 4a and 4 b )  and 
along the triple point path for single-Mach reflexion (compare figures 4c and 4 d ) .  
This was substantiated experirncntally by Parks (1952). The remaining cases of CMR 
and DMR can be treated in the same way although they have no steady-flow equivalent. 

2.1. Oblique shock-wave rejexion 

Reasons for reflexion. Steady RR and SMR can be viewed as arising from the 
boundary condition that the supersonic flow MI coming through the incident shock 
wave I must not collide with the wall (figures 4a, c ) .  The analogous situation for non- 
stationary flows is shown in figure 5 (a), where the frame of reference is attached to 

16-2 



468 G. Ben-Dor and I .  I .  Glass 

FIGURE 5 .  Explanatory diagrams of the reasons for non-stationary shock wave diffractions. 
(a) Non-stationary flow with M ,  > 1 with respect to point P. = 90-0,,. ( b )  Non-stationary 
flow with MI < 1 with respect to point P. = 90 - Ob, 0; = B, + x. 

point P. As the weak solution usually takes place in steady flows, the angle of incidence 
r j 0  between the flow illo and the shock wave I (figures 4a,  c )  always lies in the range 
p < $o < q5m. Here ,u is the Mach angle ,u = sin-ll/Mo and q5m is the incident angle 
corresponding t o  the maximum wedge-deflexion angle 8,. A supersonic flow with 
MI > 1 (weak solution) always results behind I (figures 4a, c ) .  In  the non-stationary 
case, however, since $o = 90' - 8, (figure 5a) ,  $o can also be in the range q5m < q50 < 90" 
by choosing the correct value of 8, i.e. 0 < 8, < (9O0-q5,). Consequently, the flow 
behind I is subsonic (M,  < 1 )  with respect to point P (strong solution). This would sug- 
gest a no-reflexion situation in the non-stationary case. However, it is an experimen- 
tal fact that, instead, a SlClR occurs in this range of wedge angles (0 < 0, < 90" - q5m).  
We suggest that the reflexion (when M, < 1 )  arises from the interaction of the incident 
shock wave with the bow shock wave generated by the wedge (figure 5 b). I n  a frame of 
reference attached to point T, where these two shock waves meet, state (2) results 
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from state (1) on passing through the bow shock R. Consequently, P2 > Pl and 
P2/Po > Pl/Po. To satisfy the last condition, the portion of the incident shock wave I 
that lies below T (dashed line T P )  must move forward from P to M to be more normal 
to the oncoming relative flow, forming the Mach stem T M ,  triple point T and its 
trajectory angle x, a slipstream X and state (3) (for simplicity neither is shown). All the 
SMR shown subsequently in figures 20 and 21 for 0, = 2", 5", 10" and 20" are cases 
where Ml -= 1 with respect to point P. Again one can conclude that here as well the 
weak solution occurs rather than the strong one. However, the strong solution does 
take place, but only for 8, = 0 (#o = go"), i.e. a normal shock wave. 

The angle x plays a significant role when it makes 8; = 0,+x large enough to 
make MI > 1 with respect to the triple point T (see figure 6). When the induced flow 
behind the incident shock wave becomes subsonic (M,, < l) ,  and no shock wave arises 
from its interaction with the corner neither of the two reasons for shock wave reflexions 
(figures 6a, b )  applies. Consequently, it may be concluded that shock-wave reflexion 
in the non-stationary case additionally depends on the flow-deflexion process over the 
wedge corner. This is probably the reason for the existence of CMR and DMR in 
non-stationary flows in addition to RR and SMR found in steady flows. 
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Formation and termination criteria of RR, SMR, CMR and DMR. As noted earlier, 
three different criteria for the termination of RR exist in the literature. The first one is 
due to von Neumann (1963) and is known as the 'detachment' criterion. Analytically 
it is expressed as : 

el+e,, = 0. (1) 

The second criterion, the ' mechanical-equilibrium ' criterion, is due to Henderson 

(2) 
& Lozzi [ 1975) and given by : 

el+e, = e, = 0. 

The third criterion, due to Hornung (1977) and Hornung et al. (1979), is called the 
' sonic ' criterion or 

61 + 6% = 0. (3) 

Since the sonic point and the point of maximum deflexion are usually very close, it  is 
impractical to distinguish between the ' sonic ' and the 'detachment' criteria, and 
hence only the first two criteria will be considered here. 

Hornung (1977) and Hornung et al. (1979) who introduced the 'sonic' criterion (3) 
claim that their analysis was substantiated by their experiments, Their data for non- 
stationary flow did not agree with the ' mechanical-equilibrium ' criterion. One should 
also keep in mind the noted 'remarkable anomaly' found by Henderson & Lozzi 
(1975) in their non-stationary experiments with single wedges. A few experiments 
conducted in the present work in order to verify their suggestion of undeveloped 
DMR configuration (see Q 1) using an optical magnification of 5.4 for M, M 4.7,6, = 60" 
and a wedge 8.5 cm long, failed to show any sign of DMR. 

In  all experiments claimed by Henderson & Lozzi (1975) to be undeveloped DMR 
configurations, the reflected shock wave R is straight near the reflexion point. This 
indicates that the flow behind R is supersonic (M, > 1) and hence parallel to the wall. 
However, a DMR should produce subsonic flow. Note also that Henderson & Lozzi's 
argument that the system must remain in mechanical equilibrium during transition 
is justified only if either M, or 0, are changed continuously to cause transition. How- 
ever, for a given combination of M, and 0, (i.e. no changes in these parameters) the 
requirement of mechanical equilibrium appears unwarranted. Consequently, all the 
available evidence favours Hornung (1977) and Hornung et aZ.'s (1979) conchsion 
that the ' mechanical-equilibrium ' criterion is inapplicable to non-stationary flows. 
Therefore, it can be concluded that the detachment criterion (1)  is the correct criterion 
for the termination of RR in non-stationary flows. 

The fact that Henderson & Lozzi (1975) obtained RR configurations beyond the 
detachment criterion line (calculated from perfect-gas theory) is resolved when real- 
gas effects are taken into account, as shown in figure 6. It is seen that the real-gas 
(solid) line (01+8,, = 0) starts to diverge from the perfect-gas line (dashed) a t  
M, = 1-47, owing to vibrational excitation. At M, - 6 it  is about 2.5" below the perfect- 
gas line. From there on dissociation takes place and the line splits and the components 
(1-4) drop even further with decreasing initial pressure (for a fixed initial temperature). 
At M, = 10 the lines that correspond to the initial pressures of 1000 (line 4) and 1 torr 
(line 1 )  lie at 4.7 and 7.4", below the perfect-gas line. 

The fact that real-gas cffects shift the RR boundary line downwards (figure 6) 
even at very low Mach numbers (the shift at M, = 2.5 is 0.8" in effective wedge angle 
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0;) can explain some of the disagreement found by Smith (1945), where RR was 
obtained below the terminating line. It is worth noting that his experiments were 
made in air where an even greater shift results, owing to the presence of about 20 yo 
oxygen, which becomes vibrationally excited a t  a lower shock Mach number than 
nitrogen. 

It is worthwhile to briefly summarize the results of Smith (1945). He referred to 
shock waves as weak or strong depending on whether their Mach number M, was 
smaller or greater than 1-46. His strong shock results revealed that RR persisted 
somewhat beyond the theoretical transition boundary calculated from the detach- 
ment criterion. Beside the fact that we have shown that real-gas effects start to 
become significant a t  M, = 1.47 for this boundary line Smith said that ‘it seems likely 
that they [the discrepancies in the experimental results] lie in the experiment rather 
than in the theory’. He also reported that ‘the front [of his shock waves] was some- 
what curved ’ and ‘ the center of the front was usually slightly ahead of its ends and the 
angle between the upper and lower halves of the front was often as large as 0.5”’. In  
the case of weak shocks Smith reports that ‘this angle was not over 0.2” ’ and that 
‘faint shocks behind and inclined to the main front are often visible’ [see Glass, 
Martin & Patterson (1952) for an explanation]. He also claimed that ‘from the 
intensities of their traces on the photographs, it is evident that their strengths are 
small compared to the main shock ’. The origin of these ‘satellite shocks ’ was correctly 
believed by Smith to ‘arise in the breaking of the cellophane [diaphragm]’. In  the 
case of very weak shock waves, M, < 1.1, Smith reported his experimental results to 
be in ‘definite disagreement’ with theory. On the other hand, the data obtained by 
Kawamura & Saito (1956) for M, = 1.1, did not agree with the results of Smith (1945). 
The discrepancy in the reflected shock angle was as much as 9”. It is important to 
note here that for very low Mach numbers the slope of the RR boundary line, i.e. 
dOJdM, or dOJdM, is very high (see figure 6). Consequently, a small error in the 
measurement of M, could explain some of the discrepancies reported by Smith. This 
remark becomes even more important if one recalls the fact that Smith (1945) reported 
the front of his shock waves were not completely formed when his photographs were 
taken. Consequently the incident shock wave was probably still accelerating (see 
Glass & Patterson, 1953) and did not have a constant velocity or Mach number. The 
method used by Smith to determine the value of M, was far from satisfactory in our 
present context. Prior to his work he obtained an empirical curve of the form 

where Pl and Pz are the pressures ahead of and behind the shock wave and P4 is the 
actual breaking pressure of the diaphragm. Once this curve was obtained he translated 
the reading of P4 (i.e. P,/Pl) during his experiments to P21 according to his empirical 
curve and in turn calculated M, from M, = [p(1 +aP2,)]3, where p = (y -  1)/2y, 
a = ( y +  l)/(y- 1) and y = Cp/Cv. In other words he did not measure the precise 
velocity of each shock wave in his experiments. Unfortunately, we were not able to 
perform experiments in the range M, < 2. However, we would urge a repetition of 
Smith’s experiments using presently available accurate methods of measuring 
velocity in order to finally obtain a reliable set of data in the low shock Mach number 
range of 1 < M, < 2. 

The exact value of MOc for the termination criterion of RR, i.e. the case when the 
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FIGURE 7. I and R polar combination for change-over Mach number 
M,,,, = +, M,, = 2.190, M,= 1.450, q, = 48.550. 

R polar is exactly tangent to the P axis at the point where the I polar intersects it 
(figure 7)  was not settled. The value calculated by us yields Mo, = 2.185 (To = 300K) 
for real nitrogen and Moc = 2.190 for a perfect diatomic gas ( y  = 5). The significance 
of real-gas effects even at  these low Mach numbers (M, N" 1.45) is clear, albeit small. 

When RR terminates, three different types of reflexion, i.e. SMR, CMR and DMR, 
can occur depending on the Mach number of the flow behind the reflected shock wave 
R. As long as this flow is subsonic with respect to the first triple point T a SMR occurs. 
When this flow becomes supersonic with respect to T, a kink K forms in the reflected 
shock wave R, SMR terminates and a CMR forms. Consequently, the termination 
criterion for SMR and the formation criterion for CMR is 

M2T = 1. (4) 

CMR terminates when the flow behind R becomes supersonic with respect to the kink 
K .  Therefore, the termination criterion for CMR and formation criterion of DMR is: 

MZ, = 1.  (5) 

It is worthwhile mentioning that the line MZK = 1 corresponds approximately to 
MET = 1-3 for nitrogen. Therefore, one may alternatively use the following empirical 
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FIGURE 8. Shock polar illustration of two different families of single-Mach reflexion. (a) Os = 8, < 8,, 

M,= 1.14. 

e 0 

= 2, M~ = 1.60, 8; = 42.12", M, = 1.18. (b )  e, = e, > el, 7 = g, M ,  = 1-50, e; = 40.330, 

criteria based on M,, for the existence of SMR, CMR and DMR in diatomic gases. 
SMR occurs if MZT < 1. 

A CMR takes place when 1 < MZT < 1.3. (7) 

A DMR results for all M2T > 1.3. (8) 

The gasdynamic reasons for the transitions SMR-+CMR (when the flow behind the 
reflected shock wave becomes supersonic with respect to the first triple point) and 
CMR-+DMR (when this flow becomes supersonic with respect to the kink) suggests 
that if the flow behind MI (figure I d )  becomes supersonic with respect to the second 
triple point TI (MsT1 > 1 )  a new second kink will occur. If this flow now becomes 
supersonic with respect to the second kink a triple-Mach reflexion (TMR) could form. 
In  order to verify these hypotheses, reflexions must be obtained using very strong 
incident shock waves as well as long compression models in order to allow the shock 
wave configuration to develop to a significant size. Unfortunately, experiments with 
high Mach numbers (N8 > 8) involve the risk of damaging the interferometric optical 
windows of the test section of the shock tube used for the present study. Consequently, 
it  was not possible to verify the existence of TMR in the present study. 

Additional flow properties from (P ,  0) polars. It has been found that the I and R 
polars can take on two basically different combinations immediately after RR 
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FIGURE 9. I and R polar combination for 2.19 < Mi < 2.40, 

termination. I n  one of them, the solution in the (P, 0) plane (figure 80)  indicates that 
the flow is redeflected by R so that 0, = 8, < 0,, while the other (figure 8 b )  gives 
8, = 8, > 8, and the flow is further deflected by R. A limiting condition between these 
two cases exists when 0, = 8, = el, and there is no deflexion through R (in the vicinity 
of the triple point T ) ,  i.e. R is normal to the streamlines. Note that for Mo < M,, the 
termination of R R  will always result in a SMR, since the solution in the ( P ,  8) plane 
always lies on the strong portion of the R polar and hence M2T < 1 (figures 8a,  b ) .  

For Mo > MOc where the point of tangency between the R polar and the P axis lies 
outside the I polar (figure Za, Ri, state 2' or f )  M2T will be less than unity (immediately 
after RR termination) in a small range where the intersection of the I and R polars 
lies between the sonic point sR and the point of maximum deflexion mR on the R 
polar (figure 9).  For higher values of M,, the termination of RR will result in M2T > 1 
and hence a SMR is not possible. However, any value of M, can be matched with a 
corresponding value of q5, (q50 = 90' -Oh) for which, again, MZT 6 1 (figure 10, Riii). 

When the intersection point on the R poIar lies below the sonic point (figure 10, 
Ri) a SMR is not possible, since the supersonic flow (behind R) &IzT > 1 moves toward 
the wedge surface 8, + 0. Physically, this flow must either turn away from the surface 
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eo 
FIGURE 10. Three consecutive combinations of I and R polars illustrate transition from complex 
(CMR) to single (SMR) Mach reflexion. Nitrogen, Po = 15 torr, = 300 K, Mo = 3.00. (i) M2T > I ,  
CMR (0; = 36.02', M, = 2.43). (ii) M,, = 1 ,  termination of CMR and formation of SMR 
(0: = 34.07", M, = 2.49). (iii) M 2 ,  < 1, SMR (0; = 32.10", M, = 2.54). 

or change into a subsonic flow by passing through a shock wave in order to negotiate 
the surface. In  practice when the flow behind the reflected shock becomes supersonic 
with respect to the first triple point (MgT > 1 )  a kink forms in the reflected shock wave 
and SMR terminates to form a CMR. 

Henderson & Lozei (1975) advanced the hypothesis that this kink is probably 
caused by a 'band of compression ' which turns the supersonic flow away from the 
wall. We have verified their hypothesis experimentally from a plot of isopycnics in 
CMR. They show convergence as a compression wave on the reflected shock waves 
(see subsequent figures 15d, e ) .  Consequently, a kink forms in the reflected wave at 
this convergence. For even higher values of M,, the compression wave converges to 
form a shock wave, which results in a DMR configuration. 

Rejlexions in the (M,, 0;) plane. It is worth re-examining figure ti in the light of the 
above criteria for the formation and termination of RR, SMR, CMR, DMR and NR 
in the (&I,, 6;) plane. The dashed lines are for a perfect gas ( y  = g), while the solid 
lines account for real-gas effects in nitrogen with four (numbered 1-4) different 
initial pressures Po = 1, 10, 100 and 1000 tom, respectively. It can be seen that the 
real-gas boundaries start to drop from their perfect-gas values at very low incident 
shock wave Mach numbers M, due to the temperature-dependent vibrational excita- 
tion. At higheq values of A[, each boundary line splits and falls even further with 
decreasing initial pressure as a result of dissociation. A t  still higher shock Mach 
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numbers electronic excitation and ionization would play similar roles. Under such 
conditions the sharp boundary lines which exist for a perfect gas between the domains 
of the different types of reflexion are replaced by a multiplicity of lines depending 
on the initial pressure and temperature. For example one would expect a RR for 
M, = 10 and 8; = 45" when the initial pressure Po > 1000 torr and a DMR when 
Po < 1OOtorr (8,+8,, = 0, lines 4 and 2, respectively). As M, approaches unity, the 
line for 8, + 8,, = 0 approaches the line for MI = 1.00. These two lines are coincident 
at  the origin (M, = 1,s; = 0). Consequently, RR can be obtained with very low wedge 
angles providing the incident shock wave is sufficiently weak. Note that White (1951) 
reported RR with 0, = 22" and M, = 1.022; 0, = 30" and M, = 1-018; 8, = 38" and 
M, = 1.065. 

It can be seen from figure 6 that in non-stationary flows all transitions from RR to 
SMR, CMR, DMR can occur over a very small range of Mach numbers (points a-b). 
Alternatively, if M, is fixed transitions from RR to SMR, to (CMR, SMR) or to (DMR, 
CMR, SMR) can be made by decreasing 8; (or 8,). This figure finally clears up some 
of the disagreements between various investigators who reported different sequences 
of events as one passed through a, range of wedge angles 8 ,  for a fixed M,. They were un- 
aware of the domains and their transition boundaries presented in figure 6. The differ- 
ent sequences of events (and experimental investigations) are summarized as follows: 
1.00 < N, < 1.60 (point a) ,  RR+SMR (Bleakney & Taub 1949); 1.60 < M, < 2.69 
(pointb),RR+CMR+SMR (Smith 1945); andM, > 2*69,RR+DMR+CMR+SMR 
(Kutler & Shankar 1977; Shankar et al. 1977). 

Alternatively, if one starts with a fixed wedge angle and increases the incident 
shock wave Mach number, the following transitions will be encountered. At very low 
Mach numbers a RR will result (e.g. 8:, = 40"). As M, increases the detachment 
criterion will be exceeded and RR will terminate to form a SMR where the flow 
behind the reflected shock wave is subsonic (MZy7 < 1) with respect to the triple point. 
When M, increases, MZT increases until it becomes supersonic with respect to T, a 
kink develops in the reflected shock wave and the transition SMR + CMR occurs. A t  
this stage the flow behind the reflected shock wave is subsonic with respect to the 
kink (M2= < 1). However, upon a further increase in Ms, this flow becomes supersonic 
with respect to the kink and the transition CMR + DMR takes place. 

It should be stressed that all the lines in figure G were obtained analytically. The 
Iines = 1.00 and MZg = 1.00 were found by solving the 14 nonlinear oblique shock- 
wave equations (with 14 unknowns) that describe the three-shock confluence at  a triple 
point and transforming the dynamic properties of state ( 2 )  behind the reflected shock 
wave R, from a frame of reference attached to the first triple point T to a frame of 
reference attached to the kink K .  The line 8, + 8zm = 0 was determined by solving the 
9 nonlinear oblique shock-wave equations (with 9 unknowns) that describe RR. To 
the best of our knowledge this is the first time that these two sets of nonlinear equations 
were solved for real gases (Ben-Dor 1978a). Henderson (1964) solved these two sets 
for perfect gases. The line JI, = 1.00 was obtained by solving the 4 nonlinear equations 
(with 4 unknowns) that describe the flow through an oblique shock wave (see Ben-Dor 
(1978a) for further details). 
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FIGURE 11. Deflexion processes of the shock-induced quasi-steady flow (2’) as a function of M, 
and 0,. Lines (1)-(4) are for imperfect nitrogen To = 300K and P, = 1, 10, 100 and 1000torr, 
respectively. Line 5 is for a perfect gas y = f. 

2.2 .  Induced-flow deflexion 

It was noted previously that oblique shock-wave diffractions in non-stationary flows 
also depend on the flow-deflexion process over the corner. Consider a planar shock 
wave propagating in a shock tube (figure 1 1 )  and denote the state behind it as (2’). 
For any given initial conditions (Po, To) and incident shock wave Mach number M,, 
the induced flow Mach number Mz, as well as P2. and FZr can be calculated. Consequently, 
the corresponding sonic deflexion angle OS2, and the detachment angle O m ,  can be 
determined. Therefore, the (Ms, 0,) plane can be divided into two main regions, one 
corresponds to M .  c 1, where the flow turns the corner subsonically, and the other to 
My > 1,  where the turn takes place through a bow wave. The latter can be subdivided 
into three different flow-deflexion regions: 0 < Ow c Osz! for a deflexion through a 
straight and attached oblique shock wave; Os2, c Om c Om, for a deflexion through a 
curved (but straight a t  the very leading edge) and attached shock wave; Ow > dm2? 
where the deflexion is through a curved detached shock wave. Since the maximum 
separation between Om, and O,,. for real nitrogen (Po = 15 torr, To = 300 K) was found to 
be 0.63” only two regions 0 c 0, c Om2, and 0, > Om, need be considered for practical 
purposes. 
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FIUURE 12. Variation of the triple-point trajectory angle x e i t h  incident shock Mach number 
M ,  for given wedge angles 8,. __ , imperfect nitrogen, Po = 15 torr, T, = 300K; ---, perfect 
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gas y = ;. 

The deflexion processes in the (M,, Ot0) plane are shown in figure 11. The dashed line 
is for a perfect gas (y = i) ,  while the solid lines are for real nitrogen with four (1-4) 
different initial pressures Po = 1,10,100 and 1000 torr, respectively, at a temperature 
of 300K. One should also note that the line M2. = 1 corresponds to M, = 2.068 (for a 
perfect gas) and to 2.055 with vibrational excitation. The difference between these 
two lines cannot be plotted on figure 11.  The deflexion process depends strongly on 
initial pressure for a given initial temperature. For M, = 10 and 0, = 35" the flow 
will negotiate the corner through an attached shock wave if Po = 1 torr or less and 
through a detached shock wave if Po = 10 torr or more. 

2.3. Oblique shock-wave-&fraction regimes 

Figures 6 and 11, which correspond to non-stationary shock-wave-reflexion and 
flow-deflexion processes, respectively, can be superimposed to obtain the overall 
shock-wave-diffraction phenomena. However, note that their vertical axes are 
different. In  figure 6,8; equals 0, in the RR regime and 0, + x elsewhere. Consequently, 
x must be subtracted prior to any superposition. To do so, we have made use of the 
best available analytical approach to date for obtaining x(M,, 0J developed by Law 
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& Glass (1971). A plot of x us. M, and 8, for nitrogen at Po = 15 torr, To = 300 K and 
a perfect gas with y = g (dashed) is shown in figure 12. It is seen that x is in general 
a decreasing function with increasing 19, and M,. However, its dependence on M, is 
stronger for small wedge angles Ow, e.g. when M, increases from 2.5 to 10, x changes 
gradually from 18 to 13" for 8, = lo", while for 8, = 40" it  varies only from 4 to 2.5". 
Note that the perfect-gas lines level out as M, increases, resulting in x being independent 
of M, or x = ~(8 , ) .  

The interaction between the shock-wave-reflexion phenomenon and the induced 
flow-deflexion process causes the reflected shock wave R to curl back towards the 
model and terminate a t  the wedge corner or the shock-tube wall. Since the shock-wave 
configuration is growing with time, the point where R terminates at the shock-tube 
wall moves towards the oncoming shock-induced flow. Consequently, the relative 
induced flow Mach number with respect to the perpendicular part of the reflected 
shock wave near the wall is increased. Therefore, the subsonic turning region shown in 
figure 11 cannot become established in non-stationary flows. For incident shock waves 
in the range 1 < M, < 2.068 the reflected shock wave R is continuously weakening as 
one moves along it away from the triple point. For very weak incident shock waves 
(see subsequent discussion and figures 17a, b) R degenerates to a Mach wave by the 
time it reaches the wall. At the limiting case of a degenerated incident shock wave 
(M, = l) ,  the reflected shock wave becomes a Mach wave over its entire length 
(Bargmann 1945). Therefore, as there are four reflexion processes (RR, SMR, CMR, 
DMR) and two deflexion processes (an attached or a detached shock wave), a maxi- 
mum of eight different shock-wave diffraction systems are possible. 

Figure 6 (with x subtracted) and figure 11 were superimposed to obtain figure 13 
(only the boundary lines corresponding to Po = 15torr are reproduced). Out of the 
maximum of eight possible shock-wave diffractions only seven are obtained in the 
range 1 < M, < 10. The unobtainable diffraction is a RR with an attached shock wave 
at  the wedge corner. Note that if the line 8, + 8,, = 0 and the attachedldetached line 
are extrapolated beyond M, = 10 they might intersect, and hence a RR with an 
attached shock wave could be obtained. These two lines could also intersect in the 
range 1 < M, < 10 by decreasing the initial pressure Po. Note from figures 6 and 11 
that as Po decreases these two lines approach. However, care must be taken that 
Po is not reduced to a value where the continuum assumption is violated. The seven 
different shock-wave diffractions in the range 1 < M; < 10 are listed in table 1. They 
consist of a RR with a detached shock wave (region l) ,  SMR having a detached or an 
attached shock wave (regions 2 and 3, respectively), CMR with deflexion through a 
detached or an attached shock wave (regions 4 and 5 respectively), and finally DMR 
with a detached (region 6) or an attached (region 7) shock wave. 

The experimental fact that the incident shock wave reflects even from very small 
wedge angles (note that we could not go below 8, = 2" due to the physical limitations 
of machining) led us to the conclusion that shock-wave reflexions always occur (i.e. 
even in the range 0 < 8, < 2"). Therefore, the boundary line for no reflexion NR in 
figure 6 (MI = 1.00) was omitted from figure 13, i.e. it  is assumed that on the line 
MI = 1.00 (figure 6) 6; = x. Since 19; = 8,+x by definition, the transformation from 
0; to 8, yields that the line MI = 1-00 in figure 6 coincides with the line 8, = 0 in 
figure 13. Consequently, in non-stationary flows the NR region does not exist. 
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FIUURE 13. Seven domains and their transition boundaries of shock-wave diffractions in non- 
stationary flows in (Ms, 0,) plane resulting from present analysis (see table 1). 

Shock diffraction 
r- ---h-----, 

Region no. Shock roflexion Flow deflexion 

1 RR Detached 
2 SMR Detached 
3 SMR Attached 
4 CMR Detached 
5 CMR Attached 
6 DMR Detached 
7 DMR Attached 

TABLE 1. Diffraction regions in figures 13 and 20. 
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FIGURE 15 (a, b) .  For legend see p. 484. 
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FIGURE 15. Actual flow isopycnics corresponding to the seven interferograms of the seven different 
oblique shock-wave diffractions shown in figure 14 (with identical initial conditions). Calculated 
densities (p /po)  are: (a) a, 5.32; b, 17.66 (4.88, 14.48). ( b )  a ,  3.550; b, 3.855; c ,  3.705 (3.505, 3.806, 

4.861). ( e )  a, 7.191; b, 9.131; c ,  7.570 (6.148, 7.585, 6.300). (f) a ,  4.586; b, 7.908; c, 5.669 (4.383, 
7.286, 5.086). (9)  a ,  6.685; b ,  9-184; c ,  7.347 (5.566, 7-339, 5.699). The imperfect values are given 
for the location a ,  b or c at the vicinity of the triple point or reflexion point. The values in brackets 
are the respective values for a perfect gas. 

3.678). (c) a ,  5.34; b ,  6.11; c, 5.59 (4.90, 5.47, 5.03). (d) a,  4.580; b, 6.489; C, 5.282 (4.376, 6.066, 

2.4. Density fields for the rarious diffractions 

The seven shock-wave diffraction domains corresponding to regions 1-7 of figure 13 
are shown in the interferograms, figure 14 (a)-(g), respectively (plates 2-5). The 
density distributions (PIP,,) in the flow fields, in the form of isopycnics (n) associated 
with each diffraction process are shown in figures 15 (u)-(9). The density profiles along 
the wedge and the shock-tube wall appear in figures 16(a)-(g). A general description 
is given of each diffraction as well as their similarities and differences. 

In figures 16 (a, b, d, f )  which correspond to flow deflexion through detached shock 
waves (regions 1, 2, 4 and 6 of,figure 13), shock-wave bifurcation and boundary-layer 
roll-up are clearly seen (for further details see Ben-Dor 1 9 7 8 ~ ) .  As mentioned earlier, 
when the Mach number of the incident shock wave decreases, the strength of the 
reflected shock wave decreases. Consequently, a t  low values of M, the bifurcation 
process does not occur. White (1951) in his pioneering work was able to produce 
some very weak incident shock waves. Figures 17 (a, b )  are reproductions of two of his 
figures. The initial conditions for these two pictures are lcls = 1.010, 8, = 5-7" (SMR) 
and M, = 1.018, BtL, = 30" (RR), respectively. For these low values of M, the reflected 
shock wave degenerates to a Mach wave (the weakest possible detached shock wave) 
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FIGURE 16 (a ,  b ) .  For legend see p. 488. 

and the shock-induced flow turns over the wedge subsonically. Note that for these 
two examples from White (1951) the induced flow Mach number M2, is 0.017 and 0.029, 
respectively . 

Since the flow deflexion over the corner is achieved through an attached or detached 
shock wave there is a sharp density jump a t  the point b. I n  the case of an attached 
shock wave at, the corner (figures 14c, e ,  g )  the highest density along the wall is measured 
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FIQURE 16 (c ,  d) .  For legend see p. 488. 

immediately behind the attached shock wave, i.e. a t  the corner point b,  figures lBc, 
e, g )  while in the case of a detached shock wave (figures 14a, b,  d,  f) the highest density 
may or may not be (figures 16a, d )  behind this shock wave or a t  the corner. 

The existence of a compression wave at the kink K of a CMR can be clearly seen in 
figures 15 (d, e), where the isopycnics converge. The corresponding compression 
strengths (density ratios) are approximately: 6.88016-447 and 8.77818.127 or 1.067 
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and 1.080, respectively. For compressions of 1.067, 1.080 an increasingly clearer kink 
can be seen (figures 14d, e ) .  The equivalent perfect shock wave Mach numbers that 
would give the same compressions are 1.040 and 1.048. The calculated flow Mach 
numbers behind the reflected wave MST in the vicinity of the triple point T are 1.251 
and 1.301, respectively. Once a DMR is formed (Mng > 1.00) the isopycnics do not 
converge any more (figures 15f, g) and the compression wave is replaced by a shock 
wave. 
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FIGURE 16. Interferometric density-ratio distributions along the wall for seven different oblique 

shock-wave diffractions shown in figure 14 (with identical initial conditions). 

I n  the cases of SMR (figures 15b, c )  the convergence of the isopycnics corresponds 
to a weak-expansion wave rather than a compression wave (follow the isopycnic 
numbers). The strengths of these expansion waves are: 3-747/3.868 and 5.53/6.11 or 
0.969 and 0.905, respectively. The case with an attached shock wave has the stronger 
expansion. This is also true for CMR, where the case with an attached shock wave 
has the stronger compression (figures 15e). Figures 16(b)-(g) show that the density 
along the wedge surface always increases as one moves from the Mach stem towards 
the point where the slipstream disappears into the boundary layer. Consequently the 
flow behind the Mach stem is being further compressed. 

Although the density flow fields associated with the various shock-wave diffractions 
differ greatly, nevertheless, they do have some similarities. For example, in the case 
of an attached shock wave (figures 15c SMR and e CMR), the isopycnics tend to run 
perpendicular to the reflected shock wave. I n  the case of DMR (figures 15f, 9) a 
'corridor' is formed for the second slipstream. I n  figure 14(g) the second slipstream 
is not visible. The change in density is not sufficiently large to establish a noticeable 
fringe shift. Therefore, a thin dashed line has been drawn to indicate the possible 
location of the second slipstream in figure 15 (9). 

The density at any point (x, y) can be calculated either by interpolating between 
or extrapolating beyond the isopycnic in the vicinity of that point. However, since 
the density difference between the isopycnics is quite small, any region between them 
can be assumed to have a uniform average value. For a region where the density 
change was not sufficiently large to plot isopycnics it can be assumed to be uniform 
with the indicated density number. For example, region n = 6 bounded by R, R, and 
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FIUURE 17. Shock-wave diffractions in air with degenerated reflected shock waves, R. Reproduction 
of figures 34 and 46 from White (1951): (a )  SMR, M, = 1.010, 8, = 5.7"; ( b )  RR, M, = 1.018, 
e, = 300. 
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S in figure 15 (9)  is uniform withp = 8 . 8 7 ~ ~ .  The relative error in the measured density 
is given in every figure by Ap/po and is fixed for that particular experiment. It can be 
as high as 37.6 yo for po corresponding to Po = 5 torr (figure 15g), and as low as 5.2 yo 
for a po corresponding to Po = 37 torr (figure 15b). However, this is a severe test and 
it would have been better to refer to A p / p 2  or A p / p 3 ,  since p2 and p 3  are well known, 
thereby reducing the relative error by several factors. Each fringe could be measured 
to an accuracy of 0.05-0.1 of a fringe. The position in the (x, y) plane of a point on any 
isopycnic is known to & 1 mm. Our data forms a very accurate and comprehensive 
base for comparison with inviscid numerical analyses (Ben-Dor & Glass 1978), as the 
refraction errors due to wall boundary layers are negligible. The same methods were 
used for ionizing shock structure and boundary layers (Glass & Liu 1978; Liu, Whitten 
& Glass 1978). In  these problems with very large density gradients where refraction 
errors might have been more significant, they were also found to be negligible and very 
good agreement was obtained between sophisticated numerical analyses and experi- 
ments. Consequently, the interferometric isopycnics of the flow can be used now and 
in the future as a check in the development of computational methods for non- 
stationary oblique shock-wave reflexions. 

3. Verification of diffraction domains and boundaries 
The major task was to show that our analysis predicting the seven regions and their 

transition boundaries in non-stationary oblique shock wave reflexion was verified by 
experiment. If so, it would bring understanding and order into an area that has been 
researched for over three decades. For this purpose 58 successful experiments were 
done in the 10 x 18 cm UTIAS Hypervelocity Shock Tube. A 23 cm diameter Mach- 
Zehnder interferometer was used for recording the non-stationary process. The light 
source consisted of a giant-pulse ruby laser. Simultaneous dual-frequency inter- 
ferograms were taken a t  wavelengths of 6943 and 3471.5A. Wedges with 8, = 2 , 5 ,  10, 
20, 26.56, 30, 40, 50 and 60" ( f 0.0167") were used. Each wedge was fastened to the 
lower wall of the test section of the shock tube. The clearance between the wedge 
and the shock-tube side walls or windows was 0.025 mm. Although this arrangement 
tends to introduce boundary-layer interaction a t  the wedge corner, it  was adopted 
owing to the simplicity in design and rigid fastening which is especially important on 
impact with a strong shock wave. For each wedge angle B,, about six experiments 
were made a t  the following nominal incident shock-wave Mach numbers M, = 2.0, 
3.7, 4.7, 6.0, 7.0, 8.0. Over this range the Mach number varied by about 0.1. Note 
that some of the experiments were repeated in order to check and ensure repeatability. 
The accuracy in measuring the shock-wave Mach number was 

dM, = O * O O l ~ i l l ~  + O.OlOZM,, 

which gives a relative error of 1.00 yo at M, = 2.0 (dM, = 0.02) and a relative error of 
2 yo a t  M, = 8.0 (dM, = 0.16). We did not go beyond J& z 8.0, as in similar previously 
conducted experiments in the same facility (Law & Glass 1971) the high-quality 
optical test-section windows were burned. 

The initial pressure Po was measured with an oil manometer just after admitting the 
test gas. This was measured to an accuracy of dPo (torr) = 1.40 x 10-5H (mm) + 0.08, 
which gives an error of 0.5 yo (dPo = 0.08) a t  15 torr. (Note 15 torr corresponds to 
H z 194mm.) The pressure was kept at 15torr for the runs with M, = 3.7, 4.7 and 
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FIGURE 18. Experimental verification of oblique shock-wave reflexion analysis (pseudo-stetionary 
frame of reference). Imperfect nitrogen Po = 15 tom, To = 300 K. A, 0 ,  air (Smith 1945); V, 
A, a, air (White 1951); D, A ,  V, 0, oxygen (Law & Glass 1971); 1, V, A, 0 ,  nitrogen (Ben- 
Dor & Glass 1978). Note the term reflexion is used since the results are plotted in the pseudo- 
stationary (Oi, M,) plane. 

6.0; 10 tom for M, = 7.0 and 8.0; 50 torr for M, = 2-0. The driving gases used to obtain 
the shock-wave Mach numbers with the given initial pressures were He, H, and CO,, 
respectively. The initial driver and test-gas temperatures To were usually in the 
range 295-299 K, and measured to an accuracy of 0.1 K. A detailed report of results 
is given by Ben-Dor (1978b). 

In addition to our results, we used the experimental data of Smith (1915) for 
M, = 1.25, 1.51, 2.10 and 2.40 in air as well as the data obtained by White (1951) in 
air and Law & Glass (1971) in oxygen, as shown in figure 18 (a reproduction of figure 6 
for Po = 15torr). Note that two points from Smith’s experimental data for RR lie 
slightly below the analytical boundary for RR. We believe that this slight disagree- 
ment is probably due to Smith’s use of air. The 20 % oxygen would lower the boundary 
due to vibrational excitation. 
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FIGURE 19. Verification of x 2’s. M, with 8, and comparison with experiments. ---, imperfect 
nitrogen, Po = 15 torr, To = 300 K; ---, perfect gas y = (all data points from Ben-Dor & Glass 
1978). 

Shock-wave reflexion configurations that are reported by Smith (1945) to be SMR 
in the range 2.10 6 ill, 6 2-42 appear to lie in the region that corresponds to CMR 
(figure 18). However, a careful check of Smith’s report reveals that  he observed that, 
‘for strong shocks [his strongest shock was ilfs z 2.421 a reversal of curvature [in the 
reflected shock wave] develops’ and, furthermore, ‘the portion of the reflected shock 
near the triple point then appears to be straight’. This we believe corresponds to 
CMR. It is clear that  although he had noticed a CMR configuration, he referred to  it 
as a SMR rather than propose a new type of reflexion, since these two configurations, 
except for the kink in R, are quite similar in appearance. When White (1951) dis- 
covered DMR, the importance of CMR was recognized as a different type of reflexion. 
However, in White’s report CMR is still considered as SMR. Excellent agreement can 
be seen with the no reflexion (NR) boundary line. Our analytical line = 1.00 for 
the termination of CMR and the formation of DMR agrees very well with experiment. 

Our data in figure 19 tests the method of predicting x (in nitrogen) which was 
subtracted from figure 6 to obtain figure 13. It is seen that agreement with experiments 
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FIGURE 20. Experimental verification of analysis of seven domains and their transition boundaries 
of non-stationary oblique shock-wave diffraction. 0 ,  A, A ,  air (data from White 1951); 0 ,  ., 
a, 'I, V, A, A ,  nitrogen (Ben-Dor & Glass 1978); - , imperfect nitrogen, Po = 15 tom, 
To = 300 K. Note the term diffraction is used where both elements of shock reflsxion and wedge- 
flow deflexion can be identified in the photographs. 

for wedge angles 8, > 5" is reasonably good. All experimental points in this region 
lie within 1" from their predicted values. However, for 8, < 5" agreement becomes 
progressively worse as 8, decreases. Note that Law & Glass (1971), who developed 
this method for predicting x, found it to be good only in the range 20" 6 8, < 45" (in 
oxygen). However their solution was graphical while the present one is analytical. 
Note that for 8, < 40" the actual values of x are larger than those predicted. In  this 
range all the data points fall between the predicted perfect and real-gas values. 

Our experimental-data points (in nitrogen) and White's in air are shown in figure 
20 (a reproduction of figure 13) as a test of our analysis of the shock-wave diffraction 
processes in non-stationary flows. It is seen that all of the experimental-data points 
lie inside their predicted regions. 
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FIGURE 21. Experimental verification of analysis of oblique shock-wave reflexion for diatomic 
gas. Lines are for imperfect nitrogen, P o  = 15 torr, To = 300K. A ,  @, air (data from Smith 1945); 
V, A, a, air (White 1951); 0, D, A, 0, oxygen (Law &Glass 1971); 0 ,  V, air (Bazhenovaetal. 
1976); A ,  nitrogen (Bazhenova etal. 1976); m, V, A, 0 ,  nitrogen (Ben-Dor & Glass 1978). 

The data from Smith (1 945), White (1 951) and Bazhenova et al. (1 976) in air, Law 
& Glass (1971) in oxygen and Bazhenova et al. (1976) and ours in nitrogen are shown 
in a combined plot on figure 21 (a reproduction of figure 6 with x subtracted) in order 
to check the acceptability of our analysis for the diatomic gases, nitrogen, oxygen and 
air. All the data points that lie outside their predicted regions have been discussed 
previously. Two experiments (present and one from Law & Glass 1971) with 0, = 40" 
and ill, = 2-00 and 2.56 respectively, in the region where Smith (1 945) reported SMR 
result in CMR. This substantiates our previous remarks that these experiments by 
Smith are CMR not SMR. Many more data points from White (1951) could have been 
used. However, since they fall in their predicted regions, they were omitted for clarity. 
It can be concluded that our analysis of the seven regions and their transition 
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boundaries for non-stationary oblique shock wave reflexion in a diatomic gas has been 
substantiated by experiments conducted by a number of researchers. Many additional 
details can be found in Ben-Dor (1978a, b) .  

4. Conclusions 
An analysis was presented of the domains and the transition boundaries of non- 

stationary oblique shock wave reflexions for perfect and imperfect nitrogen in the 
(ills) 6,) plane. It was shown that seven regions exist for a diatomic gas consisting of 
the basic four types of regular, single-Mach, complex-Mach and double-Mach reflexions. 
The transition boundaries depend on the incident shock Mach number M, and the 
reflexion wedge angle 0 ,  for a perfect gas and additionally on the initial temperature 
To and pressure Po for a real gas. Unlike steady flows in supersonic wind tunnels where 
only regular and single-Mach reflexions can be observed, non-stationary flows in 
shock tubes give rise to the two additional complex and double-Mach reflexions. The 
fundamental reason lies in the fact that non-stationary shock-wave diffraction con- 
sists of two elements. One is the shock-wave reflexion process at  the wedge surface 
and the other is the deflexion of the flow induced by the moving shock wave over the 
wedge. This flow can be subsonic, transonic and low supersonic. The deflexion of the 
supersonic flow over the wedge produces attached or detached bow waves. The 
deflexion processes give rise to the two additional types of non-stationary oblique 
shock-wave reflexions. 

The analysis was substantiated by 58 interferometric experiments conducted a t  
present and those of Law & Glass (1971) in the UTIAS 10 x 18 cm Hypervelocity 
Shock Tube as well as many other data in nitrogen, oxygen and air from several 
sources. It has brought new order and understanding of the various results from the 
different researchers. All the results fall into the predicted seven domains separated 
by their transition boundaries. 

Two outstanding problems remain, namely D more accurate analytical formulation 
for finding the triple-point-trajectory angle x and a better analytical method of 
predicting the location of the kink in a CMR or the second triple point of a DMR. 
Essentially, this means a solution for the second triple-point-trajectory angle x' 
(figure 1 d) .  

The very comprehensive isopycnic data are the first since the early pioneering work 
of White (1951) who first discovered the four types of reflexion. The results provide 
an important base for testing available and future computational codes describing 
such complex flows. Although existing numerical methods can satisfactorily predict 
the gross features of the wave systems and shock shapes for regular and single-Mach 
reflexions, they are as yet unsatisfactory for predicting the isopycnics of the flow 
(Ben-Dor & Glass 1978). No computational data presently exist for complex and 
double-Mach reflexions. Undoubtedly such codes will evolve in the near future. 

The personal discussions with Dr H. G. Hornung and the private communications 
with Dr L. F. Henderson on regular and Mach reflexions are very much appreciated. 
We thank Prof. S. Molder for some constructive comments. The financial assistance 
received from the U.S. Air Force under grant AF-AFOSR-77-3303 and from the 
National Research Council of Canada is gratefully acknowledged. 
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FIGURE 1. Illustration of four possible oblique shock-wave reflexions. (Interferograms are on the 
left and explanatory slietches on the right.) The intcrforograrns (A = 6943A) were talien with a 
23 cm diameter Mach-Zehnder intorferometer in the UTIAS 10 x 18 cm Hypervelocity Shock 
Tub0 for nitrogen at  an initial pressure Po z 15 torr and temperature To w 300 K. 1, 11, incidont 
shock wavos; €2, R,, reflected shock waves; M ,  M I ,  Mach stems; X, S,, slipstreams; T, TI, triple 
points; 2,  x', triple-point trajectory angles; (0)-(5), thermodynamic states. (a)  Regular refloxion 
(RR), wedge angle 8, = 60", shock Mach numbor M, = 4.68. ( b )  Single-Mach reflexion (SMR), 
0, = lo", Ma = 4.72. (c) Complex-Mach reflexion (CMR), 0, = 20", Ms = 6.90. (d) Double-Mach 
roflexion (DMR), 0, = 40°, M, = 3.76. 

(Facing p. 496) 
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FIGURE 14 (c, d ) .  For legend see plate 6. 
BEN-DOR AND GLASS 

Plate 3 
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FIGURE 14e,f. For legend see plate 5 .  
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Plate 4 



Journal of Fluid Mechanics, Vol. 92, part 3 Plate 5 

FIGURE 14. Interferograms of seven different oblique shock-wave diffractions in nitrogcn in 
non-stationary flows. Plates (a)-(9) correspond to  regions (1)-(7) of figure 13 ( A  = 69438). (a)  
Ms = 4.68, 8, = 60.00°, P, = 15.31 torr, To = 298.1 K. (b )  M, = 2.61, 8, = 10.00", P, = 37.00 torr, 
T, = 297.8 K. (c) M, = 4.72,8, = 10.OOo, Po = 15.00 torr, T, = 295.0 K. (d) M, = 3.74,8, = 30.00°, 
Pa = 15.27torr, To = 297.3K. ( e )  M,  = 6.90", 8, = 20.00", Po = 10.12torr, To = 295.8K. (f) 
M, = 3.76, 0, = 40.00", Po = 15.34torr, To = 297.4K. (9) M, = 8.06, 8, = 26.56", Po = 5.11 tom, 
To = 298.2K. 


